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Abstract

In quantum physics, the operators associated with the position and the momentum of a article are un-
bounded operators and C∗-algebraic quantisation does therefore not deal with such operators. In the present
article, I propose a quantisation of the Lie–Poisson structure of the dual of a Lie algebroid which deals with
a big enough class of functions to include the above-mentioned example. As an application, I show with
an example how the quantisation of the dual of the Lie algebroid associated to a Poisson manifold can lead
to a quantisation of the Poisson manifold itself. The example, I consider is the torus with constant Poisson
structure, in which case I recover its usual C∗-algebraic quantisation.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In his PhD thesis, Ramazan [5] (see also Landsman and Ramazan [2]) proved a conjecture of
Landsman which roughly speaking states that the quantised, that is deformed, algebra of functions
on the dual of a Lie algebroid in the direction of its natural Lie-Poisson bracket is theC∗-algebra of
the Lie groupoid integrating the Lie algebroid.1 The type of quantisations that Ramazan considers
are deformation quantisations in the sense of Rieffel [6]. Not all functions are quantised in this
way, in fact only functions whose Fourier transform is compactly supported (with respect to a
given family of measures) are quantised.
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1 That is if the Lie algebroid is integrable.
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If M is a Riemannian manifold, then its tangent bundle is a Lie algebroid which integrates
to the pair groupoid M ×M. The induced Lie–Poisson structure on T ∗M is the usual symplec-
tic structure on a cotangent bundle and Landsman–Ramazan’s quantisation can be carried over.
Nevertheless, this example shows an important limitation of this procedure: functions that are
polynomials in the fibres of T ∗M → M are not quantised, whereas functions giving the posi-
tion or the momentum of a particle are of this type. Moreover, it is well known by physicists
that the quantisation of such functions are unbounded operators, whereas Landsman–Ramazan’s
quantisation only gives elements of C∗-algebras, that is bounded operators on a Hilbert space.

In the present article, I wish to propose a quantisation of the dual of an integrable Lie algebroids
A → M which can be used on a wide class of functions. This class contains in particular functions
which are polynomial in the fibres of A∗ → M. This will be done in Sections 2 and 3, where
Theorem 2.14 is the main result. In Section 4, I show that Theorem 2.14 can be used to recover
the physicists’ position and momentum operators of a particle moving in Rn.

If M is a Poisson manifold, then its cotangent bundle is naturally a Lie algebroid whose dual can
be quantised using Theorem 2.14. One might then hope that this quantisation will help finding
a quantisation of the original Poisson manifold M. This slightly naive idea is shown to work
on an example, the torus with constant Poisson structure, in Sections 5 and 6. There, I recover
the usual C∗-algebraic quantisation of a constant Poisson structure on a torus (see Tang and
Weinstein [7], and Weinstein [8]). Part of the strategy of Section 6 consists in finding a Poisson
map between TM and M. Such maps are solutions to a partial differential equation derived in
Section 5. In Appendix A, I show how to find a solution to this equation in the case of the sphere
in R3.

2. Method of quantisation

Let G⇒ M be a groupoid and τ : A → M its Lie algebroid. I will use the same letter τ to
denote the projection A∗ → M of the dual of A. Choose a Riemannian metric on A → M. By
duality, this also gives a Riemannian metric on A∗. I will denote by X, Y or Z elements in A∗ and
by ξ or ζ elements in A.

Definition 2.1. Let E be a s-family of operators on G, that is a map q �→ Eq from M to the linear
forms onC∞

c (s −1(q)). I will denoteC∞
c (G) ⊗s C

∞
c (M) the vector space of such operators which

in addition satisfy: for all smooth family of functions H on G with compact support, that is for all
compactly supported smooth function H on N ×G for some manifold N, the function:

N ×M → C, (u, q) �→ Eq(x �→ H(u, x))

is smooth and compactly supported.
Also I will denoteOp(G) the vector space of s-family of operators E which in addition satisfy:

for all smooth family of functions H on G with compact support, that is for all compactly supported
smooth function H on N ×G for some manifold N, the function

N ×G → C, (u, z) �→ Et(z)(x �→ H(u, xz))

is smooth and compactly supported.

Notice that since M is a closed sub-manifold of G, the spaceOp(G) is included in C∞
c (G) ⊗s

C∞
c (M). On the contrary,
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Proposition 2.2. Let D be in C∞
c (G) ⊗s C

∞
c (M). For any compactly supported smooth function

H on N ×M, the map:

N ×G → C, (u, z) �→ Dt(z)(H(u, ·z))
is smooth. Nevertheless, it might fail to be compactly supported.

Proof. Let H be a compactly supported smooth function on N ×G, where N is a manifold. I
wish to prove that the map:

N ×G → C, (u, z) �→ Dt(z)(H(u, ·z))
is smooth. Let (u0, z0) be a point in N ×G. Let ϕ be a compactly supported smooth function on
G such that ϕ ≡ 1 on a neighbourhood of z0. Consider:

H̃ : N ×G(2) → C, (u, x, z) �→ H(u, x · z)ϕ(z).

If

K′ = {(u, x, z) ∈ N ×G(2)|(u, xz) ∈ suppH, z ∈ suppϕ},
then the support of H̃ is a closed subset of K′ and since one easily checks that K′ is compact, it
follows that H̃ has compact support. Using the fact that G(2) is a closed sub-manifold of G×G,
I extend H̃ to a function, still denoted H̃ , in C∞

c (N ×G×G). Let Ñ = N ×G. By interpreting
the extended version of H̃ as a function:

Ñ ×G → C, ((u, z), x) �→ H̃(u, x, z).

I can apply D and obtain a function:

Ñ ×M → C, ((u, z), q) �→ Dq(H̃(u, ·, z))
in C∞

c (Ñ ×M). The closed sub-manifold {x, z, t(z)} of Ñ ×G is diffeomorphic to N ×G.
Therefore, (u, z) �→ Dt(z)(H(u, ·z)ϕ(z)) is smooth. This map is equal to (u, z) �→ Dt(z)(H(u, ·z))
in a neighbourhood of (u0, z0). This can be done for any choice of (u0, z0), it follows that
(u, z) �→ Dt(z)(H(u, ·z)) is smooth.

Nevertheless, the map (u, z) �→ Dt(z)(H(u, ·z)) needs not be compactly supported. Indeed,
choose M to be a point, that is G is a genuine group. Let f be a smooth function on G, µ = dg be a
right invariant measure on G andD = Df be defined as in Proposition 2.3. Then for h a function on
G, the map z �→ ∫

G
f (g)h(gz) dg is certainly not compactly supported in general. For example, if f

is the constant function equal to 1 then the above map is the constant function equal to
∫
G
h dg. �

LetA → M be the Lie algebroid ofG⇒ M. Assume that we have a right invariant everywhere
positive section µ of |�|1(T sG); it defines a right invariant smooth Haar system onG⇒ M. This
section is entirely determined by its value along M in G, which is a section, denoted dµ, of |�|1(A).
Equivalently, dµ is a smooth family of Lebesgue measures on the fibres of A → M. By taking
the dual, we obtain a family of Lebesgue measures on A∗ → M, the dual of A → M.

Integration provides a way of embedding C∞(G) in C∞
c (G) ⊗s C

∞
c (M).

Proposition 2.3. Let f be in C∞(G). For each q in M, consider the following linear form on
C∞
c (s −1(q)):

Df,q : h �→
∫
s −1(q)

fhµ.

Then Df is in C∞
c (G) ⊗s C

∞
c (M).

If moreover f has compact support, then Df is in Op(G).
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Proof. Let N be a manifold and H a compactly supported smooth function on N ×G. It is clear
that the map (u, q) �→ Df,q(H(u)) has support in (IdN × s)(suppH ) which is compact.

Moreover, because fH has compact support, it is a finite sum of functions with support contained
in open local charts. Writing things in these local coordinates, it becomes obvious that the map
(u, q) �→ Df,q(H(u)) is smooth.

In addition, when f has compact support, the map:

N ×G(2) → C, (u, x, z) �→ f (x)H(u, xz)

has compact support. Hence

N ×G → C, (u, z) �→
∫
s −1(t(z))

f (x)H(u, xz)

has compact support and Df is in Op(G). �
The Lie algebroid τ : A → M is in particular a vector bundle and one can construct a Lie

groupoid A⇒ M with both the source and the target map equal to the projection τ : A → M. In
particular, each smooth function on A gives an element of C∞

c (A) ⊗τ C
∞
c (M). Let f be a smooth

function on A∗. Unless the restriction of f to each fibre of A∗ is L1, the Fourier transform of f
is not defined. Nevertheless, the Fourier transform of Df is defined for a much larger class of
functions.

Definition 2.4. Let f be a smooth function on A∗. Say that f has polynomial controlled growth if

• for every q in M,
• every smooth multi-vector field υ on M,
• every non-negative integer k and every section δ of SkA∗, and
• every trivialisation φ : A|B′ → Aq × B′ in a neighbourhood B′ of q,

there exists a smaller neighbourhood B ⊂ B′ of q, a non-negative constant C and an integer m
such that

(Υ∆ · f )(Y ) ≤ C(1 + ‖Y‖2)m, for allY inA∗|B, (1)

where Υ is the multi-vector field defined on A∗ using υ and the trivialisation φ, and ∆ is the
multi-vector field on A∗ defined using δ and the vector space structure on the fibres of A∗.

Denote by Cpg∞(A∗) the set of smooth functions on A∗ with polynomial controlled growth.

Notice that the above definition remains unchanged if one replaces Υ∆ by ∆Υ in (1). Also,
to check if f has polynomial controlled growth, it is enough to check (1) for only one particular
choice of trivialisation φ.

The interesting thing about functions with polynomial controlled growth is that one can define
the Fourier transform of the operator Df associated to them. This will be a consequence of the
following easy lemma.

Lemma 2.5. Let (t, ξ) be coordinates on R × Rn and K a compactly supported smooth function
on R × Rn. If P is any polynomial function on Rn then the map:

R × Rn → C, (t, X) �→ P(X)
∫
Rn

dξ e−i〈X,ξ〉K(t, ξ)

is bounded.
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Proof. This is just another simple application of the fact that the Fourier transform takes multi-
plication by a variable to differentiation with respect to that variable. �
Corollary 2.6. If f has polynomial controlled growth, set the Fourier transform of Df to be

F(Df )q(h) =
∫
A∗
q

dµ(X)f (X)F(h)(X), ∀ q ∈ M, h ∈ C∞
c (τ −1(q)).

This is a well-defined element of C∞
c (A) ⊗τ C

∞
c (M).

Proof. If H is a compactly supported smooth function on A, then using Lemma 2.5 it is easy to
prove that Df (H) is a well-defined smooth function on Q.

In addition, the support of Df (H) is included in the image of the support of H under the
projection τ : A → Q and is therefore compact. �

In Definition 2.11, I define the set of functions acceptable for quantisation as a subset of the set
of functions with polynomial controlled growth. One can then apply Proposition 2.13 to see that
the set of functions with polynomial controlled growth is big enough for our purpose. Moreover,
it is a Poisson algebra as the next lemma shows.

Lemma 2.7. The set of functions with polynomial controlled growth forms a Poisson sub-algebra
of C∞(A∗).

Proof. This is a simple consequence of Lemma 3.6. �
I now wish to put a structure of algebra on Op(G).

Proposition 2.8. Let D and E be two elements of Op(G). For q in M and h in C∞
c (s −1(q)), set:

(D � E)q(h) = Eq(z �→ Dt(z)(R
∗
zh)).

The operator D � E lies in Op(G).

Proof. Let N be a manifold and H a compactly supported smooth function on N ×G. The
function F on N ×G defined by F (u, z) = Dt(z)(H(u, ·z)) is smooth and compactly supported
because D is inOp(G); therefore the function (u, z) �→ Et(z)(F (u, ·z)) is smooth and compactly
supported. �

Since G is a groupoid over M, recall that its tangent groupoid is a Lie groupoid over R ×M

with set of arrows the union of R − {0} ×G and {0} × A. This set is given a smooth structure
in a suitable way so that its Lie algebroid, called the tangent Lie algebroid, is R × A → R ×M

with the obvious projection and the following bracket of sections: if (�, ζ(q, �)) and (�, ξ(q, �))
are two sections of the tangent Lie algebroid, let ζ� and ξ� denote the restrictions of ζ and ξ to a
fixed �. These are sections of A → M. Then

[(�, ζ), (�, ξ)](�, q) = (�, �[ζ�, ξ�](q)).

If η is the anchor map of A → M, then the anchor map of the tangent Lie algebroid is

R × A → R × TM, (�, ξ) �→ �η(ξ).

For more details on tangent groupoids, see [1].
To fix the notation, let G̃ be the tangent groupoid of G, with respective source and target maps

tildes and t̃, and τ̃ : Ã = R × A → R ×M its Lie algebroid. I will present a method to construct
a map from C∞

c (A) ⊗τ C
∞
c (M) to C∞

c (G̃) ⊗s̃ C
∞
c (R ×M). Let α be a diffeomorphism from an
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open neighbourhood W of M in A to an open neighbourhood V of M in G such that

• α(q) = q for q in M,
• s ◦ α = τ, in particular α sends Aq to s −1(q),
• the differential at zero of the restriction of α to Aq is the identity map from Aq to Aq.

For example such an α can be obtained from the choice of an exponential map. Let

W̃ = {(�, X) ∈ R × A| �X ∈ W}
be an open subset in Ã. On it, the map:

α̃(�, X) =
{

(�, α(�X)) for � �= 0

(0, X) for � = 0

is a diffeomorphism onto an open neighbourhood Ṽ of R ×M in G̃. Choose a smooth function
ψ on A with support in W such that ψ|(1/2)W ≡ 1. Define ψ̃ in C∞(R × A) by ψ̃(�, X) = ψ(�X).

Proposition 2.9. Let D be in C∞
c (A) ⊗τ C

∞
c (M). For (�, q) in R ×M and h in C∞

c (s̃ −1(�, q)),
set

D̃(�,q)(h) = Dq(X �→ ψ̃(�, X)h ◦ α̃(�, X)).

The operator D̃ lies in C∞
c (G̃) ⊗s̃ C

∞
c (R ×M).

Proof. Let N be a smooth manifold and H a compactly supported smooth function on N × G̃.
The function ψ̃ ◦ α̃ −1 defined on Ṽ can be extended, by zero, to a smooth function on the whole
of G̃. The product of this function with H is of course with compact support in Ṽ ; hence its pull
back by α̃ is compactly supported. It follows that the function:

(N × R) × A → C, ((u, �), X) �→ ψ(�X)H(u, α̃(�, X))

is well defined, smooth and compactly supported. Therefore, I can apply the operator D to it and
get a compactly supported smooth function on N × R ×M. This proves that D̃ is in C∞

c (G̃) ⊗s̃

C∞
c (R ×M). �

Notice that in the above proof, the function ψ is used to make sense of expressions of the type
ψ(�X)H(u, α̃(�, X)) even when (�, X) is not in W̃ , the domain of definition of α̃.

Let us see what happens to the product of two operators constructed as in the previous propo-
sition at � = 0.

Lemma 2.10. Let D1 and D2 be in C∞
c (A) ⊗τ C

∞
c (M) such that D̃1 and D̃2 are in Op(G).

Let H be a compactly supported smooth function on G̃ and q be a point of M. If H0 denotes the
restriction of H to A ⊂ G̃ then

(D̃1 � D̃2)(0,q)(H) = (D1 � D2)q(H0).

In particular, if fi=1,2 are functions on A∗ such that F(Df1 ) and F(Df2 ), respectively, ˜F(Df1 )

and F̃(Df2 ), are in Op(A), respectively, Op(G̃), then

(F̃(Df1 ) � F̃(Df2 ))(0,q)(H) = F(Df1f2 )q.
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Proof. The first claim is true because

(D̃1 � D̃2)(0,q)(H) = D2,q(Y �→ D1,q(X �→ H(0, X+ Y ))) = (D1 � D2)q(H0).

The second claim is true because

(F̃(Df1 ) � F̃(Df2 ))(0,q)(H)

= (F(Df1 ) � F(Df2 ))q(H0)

=
∫
A∗
q

dµ(X)f2(X)
∫
Aq

dµ(ξ) e−〈ξ,X〉
∫
A∗
q

dµ(Y )f1(Y )
∫
Aq

dµ(ζ) e−〈ζ,Y〉H0(ξ + ζ)

=
∫
A∗
q

dµ(X)f2(X)
∫
Aq

dµ(ξ) e−〈ξ,X〉
∫
A∗
q

dµ(Y )f1(Y )
∫
Aq

dµ(ζ) e−〈ζ−ξ,Y〉H0(ζ)

=
∫
A∗
q

dµ(X)f2(X)F(F −1(f1F(H0)))(X)

=
∫
A∗
q

dµ(X)f2(X)f1(X)F(H0)(X) = F(Df1f2 )q(H0). �

Of course, not every element D of C∞
c (A) ⊗τ C

∞
c (M) gives an element of Op(G̃) and an

important problem is to be able to determine when does D̃ lie inOp(G̃)? More precisely, for f in

C∞(A∗), I want to know when does F̃(Df ) lie in Op(G̃)?
Definition 2.11 gives an answer to this question.
Let f be a smooth function on A∗ such that for any q in M and any compactly supported

smooth function h on Aq, the product of the restriction fq of f to A∗
q by the Fourier trans-

form F(h) is again the Fourier transform of a compactly supported smooth function denoted by
mf (q)h:

fqF(h) = F(mf (q)h).

For N a smooth manifold and θ : N → M a smooth map, denote by � the induced bundle mor-
phism θ∗A → A.

Definition 2.11. A smooth function H̃ on θ∗A is said to be sufficiently compact if:

(i) it is in C∞
vc (θ∗A), the set of vertically compactly supported smooth functions;

(ii) for any subset K of A which is compact modulo M (that is K is closed andK\M has compact
closure),2 the set

(supp(H̃) +� −1K) ∩N
is relatively compact. This requirement says that ‘small vertical perturbations of the support
of H̃ meet N in a compact set’.

The set of sufficiently compact functions on θ∗A is denoted by C∞
sc (θ∗A).

A smooth function f on A∗ is said to be acceptable for quantisation if:

2 Any compact set is compact modulo M; but there might be other compacts modulo M : M ⊂ A itself is compact
modulo M even if it is not compact.
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1. f has polynomial controlled growth,
2. mf preserves C∞

c (A),
3. mf preservesC∞

sc (θ∗A) for all manifolds N and smooth functions θ : N → M, where the action
of mf in (1) and (2) is defined fibre-wise.

The set of smooth functions acceptable for quantisation is denoted by Q(A∗).

One reason to state the rather technical above definition is the following proposition.

Proposition 2.12. If f is acceptable for quantisation then F̃(Df ) lies in Op(G̃).

Proof. Let f be acceptable for quantisation. Let N be a manifold and H̃ a compactly supported
smooth function on N × G̃. I need to prove that the function:

N × G̃ → C,

(u, �, z) �→ F̃(Df )
�,t(z)((�, x) �→ H̃(u, (�, x)(�, z)))

=
∫
A∗
t(z)

dµ(X)f (X)
∫
At(z)

dµ(ξ) e−i〈ξ,X〉ψ(�ξ)H̃(u, α̃(�, ξ)(�, z)),

is compactly supported.
Define θ : N × G̃ → M by

θ(u, �, z) = t(z).

Let F be the function:

θ∗A → C, (u, �, z, ξ) �→ ψ(�ξ)H̃(u, α̃(�, ξ)(�, z)).

I need to prove that mfF (u, �, z, 0t(z)) is compactly supported in (u, �, z). It will be enough to
prove that F is sufficiently compact on θ∗A.

Fix (u, �, z) in N × G̃. Because H̃ is compactly supported and because multiplication on the
right in a groupoid is a diffeomorphism between two fibres of the source map, the map:

N × s̃ −1(�, t(z)) → C, (u, �, x) �→ H̃(u, (�, x)(�, z))

is compactly supported. The function ψ̃ ◦ α̃ −1 is defined on an open subset of s̃ −1(�, t(z))
and can be extended by zero to a smooth function on the whole of s̃ −1(�, t(z)). Its product with
H̃(u, (�, x)(�, z)) is compactly supported. This product composed with α̃ is a compactly supported
function on θ∗A(u,�,t(z)). This proves that F has vertical compact support.

Let K be a compact modulo M in A. I am interested in

(suppF +� −1K) ∩N × G̃ ⊂ {(u, �, z, 0t(z))|∃ξ ∈ At(z),
�ξ ∈ suppψ, (u, α̃(�, ξ)(�, z)) ∈ suppH̃, −ξ ∈ K}.

Let (uj, �j, zj, 0) be a sequence in set on the right-hand side of the above inclusion. For each
j, choose an element ξj of −K such that (uj, �j, α̃(�j, ξj)(�j, zj)) is in the support of H̃ . This
sequence satisfies
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1. −ξj is a sequence in K,
2. �jξj is a sequence in the support of ψ,
3. (uj, �j, α̃(�j, ξj)(�j, zj)) is a sequence in the support of H̃ .

Because the support of H̃ is compact, we can find a subsequence such that ujk , �jk and
α̃(�jk , ξjk )(�jk , zjk ) converge. Also, since K is compact modulo M, we can extract a subsequence
such that either ξjk converges or ξjk lies in M. In the former case, �jk ξjk converges in suppψ and
α̃(�jk , ξjk ) admits a limit, therefore (�jk , zjk ) converges. In the latter case, α̃(�jk , ξjk )(�jk , zjk ) =
(�jk , zjk ) converges as well. It follows that (suppF +� −1K) ∩N × G̃ is compact. �
Proposition 2.13. If f is either:

• the Fourier transform of a compactly supported smooth function on A,
• polynomial in the fibres, that is f is a smooth section of ⊕kS

kA,
• a compactly supported character, i.e. it is of the type Xq �→ ei〈�(q),X〉, where � is a compactly

supported smooth section of A,

then f is in Q(A∗).

This proposition shows that Q(A∗) contains indeed many interesting functions.

Proof. Let f be the Fourier transform of a compactly supported smooth function g. For each q in
M, choose a local chart together with a trivialisation of A and A∗ over it. Writing things in these
local chart and local trivialisation, to prove that f has polynomial controlled growth is a simple
matter of differentiating under the integral sign in the definition of the Fourier transform.

If f is either polynomial in the fibres or a compactly supported character, is even more immediate
to prove that f has polynomial controlled growth.

Fix a compactly supported smooth function H on A, a manifold N, a smooth map θ : N → M

and a sufficiently compact smooth function H̃ ∈ C∞
sc (θ∗A).

Firstly, assume that f is the Fourier transform of a compactly supported smooth function g on
A. The support ofmfH is included in the sum of suppg and the support of H, hence it is compactly
supported. In the same way, the support of mf H̃ is included in the sum of the support of H̃ and
� −1suppg. It easily follows that mf H̃ is again sufficiently compact.

Secondly, assume that f is a smooth section of ⊕kS
kA. For such a function, the operatormf is

given by a differential operator ∂f and ∂fH has support included in the support of H, therefore
∂fH is in C∞

c (A∗). In the same way, mf = ∂f preserves C∞
sc (θ∗A). Hence, f is acceptable for

quantisation.
Finally, assume that f is of the type f (Xq) = ei〈�(q),X〉. Then the effect of mf on H is to

translate its support by � on each fibre of A → M. Therefore, mfH has also compact support.
For the same reason, mf H̃ is also still vertically compactly supported. The support of mf H̃ is
equal to suppH̃ +� −1Im(−�). Since l is compactly supported, its image is compact modulo M
and mf H̃ is again sufficiently compact. �
Theorem 2.14. LetG⇒ M be a groupoid with Lie algebroid τ : A → M. Define a quantisation
map:

Q : C∞
pg(A∗) → C∞

c (G̃) ⊗s̃ C
∞
c (R ×M), f �→ F̃(Df ).

Then this defines a quantisation of the Poisson manifold A∗ in the sense that Q sends the set of
functions acceptable for quantisation Q(A∗) into Op(G̃); moreover, if f and g are two functions
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acceptable for quantisation then

Q(f ) � Q(g)(0,q) = Q(fg)(0,q)

and the operator D = 1
i� [Q(f ),Q(g)] is in C∞

c (G̃) ⊗s̃ C
∞
c (R ×M) with

D(0,q) = Q({f, g})(0,q),

for every q in M.

Notice that along a non-zero �, Q(f ) restricts to an operator:

Q(f )� : C∞
c (G) → C∞

c (G),

while for � = 0 it restricts to an operator C∞
c (A) → C∞

c (A) which is the Fourier transform of the
operator multiplication by f on C∞

c (A∗).
Theorem 2.14 is a consequence of Lemma 2.10 and Corollary 3.8. The proof of this corollary

will take up the whole of next section.
In Section 4, I show how by applying Theorem 2.14 one recovers the quantisation of the

position and momentum operators used by physicists. In Section 6, I will show how to use it to
recover Weinstein strict quantisation of the torus with constant Poisson structure.

3. Computation in local coordinates

Let m = dimM, U be an open subset of Rm and ϕ a diffeomorphism between U and an open
subset of M:

ϕ : U → ϕ(U) ⊂ M.

Let

U × Rn → A|U, (u, ξ) �→ γ(u, ξ)

be a trivialisation above ϕ(U) of the vector bundleA → M, read in the local chart (U, ϕ). I identify
Rn with its dual using the usual Euclidean structure of Rn. Therefore, γ also defines a trivialisation
δ of the restriction of A∗ → M to ϕ(U). This trivialisation is characterised by

〈δ(u,X), γ(u, ξ)〉 = 〈X, ξ〉,
where 〈 , 〉 denotes both the pairing between A and A∗, and the Euclidean product on Rn.

Choose an open neighbourhood V of U × {0} in Rm × Rn, such that α is defined on γ(V ). I
can define a local chart for G:

θ : V → G, (u, v) �→ α ◦ γ(u, v).

Let V ′ be an open neighbourhood of U × {0} in V verifying:

1. for each (u, v) in V ′, there exists u in U such that t ◦ θ(u, v) = ϕ(u),
2. for each (u1, v1) and (u2, v2) in V ′ with t ◦ θ(u2, v2) = ϕ(u1), the product θ(u1, v1)θ(u2, V2)

is in θ(V ).

Let σ : V ′ → U be given by (notice that ϕ −1 ◦ s ◦ θ(u) = u):

σ(u, v) = ϕ −1 ◦ t ◦ θ(u, v).



1820 S. Racanière / Journal of Geometry and Physics 56 (2006) 1810–1836

Let

V ′
prU

×σ V
′ = {(u, v1, v2)| (u, v2) ∈ V ′, (σ(u, v2), v1) ∈ V ′}

and define

p : V ′
prU

×σ V
′ → V, (u, v1, v2) �→ θ −1(θ(σ(u, v2), v1)θ(u, v2)).

Ramazan [5, Proposition 2.2.5] proved:

p(u, v1, v2) = (u, v1 + v2 + B(u, v1, v2) +O3(u, v1, v2)),

θ(u, v) −1 = θ(σ(u, v),−v+ B(u, v, v) +O3(u, v)),

where B(u, v1, v2) is bilinear in (v1, v2) and O3(u, v1, v2), respectively, O3(u, v), is of degree of
homogeneity at least 3 in v1 and v2, respectively v.

For ξ in Rn:

∂θ

∂v
(u, v)ξ = dγ(u,v)α ◦ ∂γ

∂v
(u, v)ξ = dγ(u,v)α ◦ γ(u, ξ),

because γ is linear in v. In particular

∂θ

∂v
(u, 0)ξ = γ(u, ξ),

because dα is the identity along M. Moreover, ϕ(u) = θ(u, 0).
The map:

γ̃ : R × U × Rn → Ã|R×U, (�, u, ξ) �→ (�, γ(u, ξ))

gives a local trivialisation of the Lie algebroid Ã → R ×M over R × U. Let

Ṽ = {(�, u, v)| (u, �v) ∈ V }
and

Ṽ ′ = {(�, u, v)| (u, �v) ∈ V ′}.
I obtain local coordinates on G̃ by taking θ̃ = α̃ ◦ γ̃:

θ̃ : Ṽ → G̃, (�, u, v) �→ α̃(�, γ(u, v)).

Let q be in M and ξ be in Aq. Assume that ξ is in the domain of α. The map:

Tξ : Aq → At◦α(ξ), ζ �→ d

dr

∣∣∣∣
r=0

α(ξ + rζ)α(ξ) −1

defines an isomorphism between Aq and At◦α(ξ).

Lemma 3.1. Let u be in U. Let � ∈ R and ζ, ξ in Rn:

d

d�

∣∣∣∣
�=0

α̃(�, T�γ(u,ξ) ◦ γ(u, ζ))α̃(�, γ(u, ξ)) = d(0,u,ζ+ξ)θ̃(1, 0, 0).

Proof. I first compute

α̃

(
�,

d

dr

∣∣∣∣
r=0

α ◦ γ(u, �ξ + rζ)α ◦ γ(u, �ξ) −1
)
α̃(�, γ(u, ξ))

= α̃

(
�,

d

dr

∣∣∣∣
r=0

θ(u, �ξ + rζ)θ(u, �ξ) −1
)
θ̃(�, u, ξ)



S. Racanière / Journal of Geometry and Physics 56 (2006) 1810–1836 1821

= α̃

(
�,

d

dr

∣∣∣∣
r=0

θ(u, �ξ + rζ)θ(σ(u, �ξ),−�ξ +O(�2))

)
θ̃(�, u, ξ)

= α̃

(
�,

d

dr

∣∣∣∣
r=0

θ(σ(u, �ξ), rζ +O(�2) + B(σ(u, �ξ), �ξ + rζ,−�ξ +O(�2))

+O3(σ(u, �ξ), �ξ + rζ,−�ξ +O(�2)))

)
θ̃(�, u, ξ)

= θ̃ ◦ γ̃ −1
(

�,
∂θ

∂v
(σ(u, �ξ), 0)(ζ + B(σ(u, �ξ), ζ,−�ξ +O(�2)) +O(�2))

)
θ̃(�, u, ξ)︸ ︷︷ ︸

At r = 0, we have θ(u,�ξ + rζ)θ(u,�ξ) −1 = t ◦ θ(u, ξ), thus the differential of θ(u,�ξ + rζ)θ(u,�ξ) −1 at

r = 0 is of the type (∂θ/∂v)(σ(u,�ξ), 0)φ for a certain vectorφ.

= θ̃(�, σ(u, �ξ), ζ − �B(σ(u, �ξ), ζ, ξ) +O(�2))θ̃(�, u, ξ)

= (�, θ(σ(u, �ξ), �ζ − �2B(σ(u, �ξ), ζ, ξ) +O(�3))θ(u, �ξ))︸ ︷︷ ︸
This is true only for� �=0, nevertheless the final result of the computation is trivially true for�=0

= (�, θ(u, �ζ − �2B(σ(u, �ξ), ζ, ξ) +O(�3) + �ξ

+B(u, �ζ − �2B(σ(u, �ξ), ζ, ξ) +O(�3), �ξ) +O(�3)))

= (�, θ(u, �ζ + �ξ − �2B(σ(u, �ξ), ζ, ξ) + B(u, �ζ, �ξ) +O(�3)))

= θ̃(�, u, ζ + ξ − �B(σ(u, �ξ), ζ, ξ) + �B(u, ζ, ξ) +O(�2)).

The lemma follows by differentiation with respect to � at 0. �
Lemma 3.2. Let f and g be inQ(A∗). Let q be a point in M and H a compactly supported smooth
function on G̃. Let

Nfg(�) = F̃(Df ) � F̃(Dg)
�,q

(H),

then
dNfg

d�
(0) = F(Df ′g)q(H0) + F(Dfg)q

(
∂H

∂�

∣∣∣∣
�=0

)
,

where

f ′(Y ) = d

d�

∣∣∣∣
�=0

f (Y ◦ T −1
�ξ

)

and H0 = H |�=0.

The term ∂H
∂�

∣∣
�=0 is defined by first pulling back H to a neighbourhood of {0} × A in R × A

via α̃, then differentiating with respect to � and finally pushing forward the result via α̃ again.
This definition is actually independent of the choice of α.

Proof. We have

Nfg(�) =
∫
A∗
q

dµ(X)g(X)
∫
Aq

dµ(ξ) e−i〈X,ξ〉
∫
A∗
t◦α(�ξ)

dµ(Y )f (Y )

×
∫
At◦α(�ξ)

dµ(ζ)e−i〈Y,ζ〉ψ(�ξ)ψ(�ζ)H(α̃(�, ζ)α̃(�, ξ)).
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The following change of variables:

• replace Y by Y ◦ T −1
�ξ

with Y ∈ A∗
q,• replace ζ by T�ξ(ζ) with ζ ∈ Aq,

gives

Nfg(�) =
∫
A∗
q

dµ(X)g(X)
∫
Aq

dµ(ξ) e−i〈X,ξ〉
∫
A∗
q

dµ(Y )f (Y ◦ T −1
�ξ

)

×
∫
Aq

dµ(ζ) e−i〈Y,ζ〉ψ(�ξ)ψ(�T�ξ(ζ))H(α̃(�, T�ξ(ζ))α̃(�, ξ)).

The changes of variables require to introduce the terms det T�ξ and det T −1
�ξ

in the above integral;
but these two terms cancel each other since their product is 1.

Leaving out the justification for it for later, I differentiate the above expression under the
integral signs. Since ψ is constant and equal to 1 in a neighbourhood of M, it follows that:

• ψ(0q) = 1 and

• d
d�

∣∣∣
�=0

ψ(�ξ) = d
d�

∣∣∣
�=0

ψ(�T�ξ(ζ)) = 0.

Because of Lemma 3.1 and by definition of ∂H
∂�

:

d

d�

∣∣∣∣
�=0

H(α̃(�, T�ξ(ζ))α̃(�, ξ)) = ∂H

∂�
(0, ζ + ξ).

The lemma follows since∫
A∗
q

dµ(X)g(X)
∫
Aq

dµ(ξ) e−i〈X,ξ〉
∫
A∗
q

dµ(Y )f (Y )
∫
Aq

dµ(ζ) e−i〈Y,ζ〉 ∂H
∂�

(0, ζ + ξ)

= F(Df ) � F(Dg)q

(
∂H

∂�

∣∣∣∣
�=0

)
= F(Dfg)q

(
∂H

∂�

∣∣∣∣
�=0

)
,

where the last line is true by Lemma 2.10.
There now remains to justify differentiation below the integral signs in∫

A∗
q

dµ(X)g(X)
∫
Aq

dµ(ξ) e−i〈X,ξ〉
∫
A∗
q

dµ(Y )f (Y ◦ T −1
�ξ

),

∫
Aq

dµ(ζ) e−i〈Y,ζ〉ψ(�ξ)ψ(�T�ξ(ζ))H(α̃(�, T�ξ(ζ))α̃(�, ξ)).

Let θ be the map:

Ṽ → M, (�, ξ) �→ t ◦ α(�ξ).

Define a function H̃ on θ∗A by

H̃(�, ξ, ζ) = ψ(�ξ)ψ(�ζ)H(α̃(�, ζ)α̃(�, ξ)).
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Let

S1(�, ξ, Y ) =
∫
Aq

dµ(ζ) e−i〈Y,ζ〉H̃(�, ξ, ζ),

S2(�, ξ) =
∫
A∗
q

dµ(Y )f (Y ◦ T −1
�ξ

)S1(�, ξ, Y ), S3(�, X) =
∫
Aq

dµ(ξ) e−i〈X,ξ〉S2(�, ξ),

where S1 is defined on θ∗A∗, S2 is defined on Ṽ and extended by zero to R × A and S3 is defined
on R × A∗.

I claim that H̃ is in C∞
sc (θ∗A). The proof of this claim is similar to that for F in the proof of

Proposition 2.12 and will not be reproduced here. It follows that

S2(�, ξ) = mf H̃(�, ξ, 0)

is compactly supported in (�, ξ).
For ξ fixed, the function H̃ is compactly supported in (�, ζ), hence derivation below the integral

sign in S1 is possible.
Since f has polynomial controlled growth, for ξ fixed, there exists a positive constant C, an

ε > 0 and an integer m such that∣∣∣∣ ∂∂� (f (Y ◦ T −1
�ξ

)S1(�, ξ, Y ))

∣∣∣∣ ≤ C(1 + ‖Y‖2)m
(

|S1(�, ξ, Y )| +
∣∣∣∣ ∂∂�S1(�, ξ, Y )

∣∣∣∣) .
By Lemma 2.5, both terms on the right-hand side of the above inequality are bounded by a smooth
L1 function independent of �. Differentiation below the integral sign in S2 is therefore possible.

Since S2 is compactly supported, differentiation below the integral sign in S3 is possible.
To finish, since g has polynomial controlled growth and by Lemma 2.5, differentiation below

the integral sign in Nfg is possible. �
Lemma 3.3. Let ξ and ζ be in Rn, then

d

d�

∣∣∣∣
�=0

Tγ(u,�ξ) ◦ γ(u, ζ) = ∂γ

∂u
(u, ζ) ◦ ∂σ

∂v
(u, 0)ξ − γ(u,B(u, ζ, ξ)).

Proof. First, I compute

Tγ(u,�ξ) ◦ γ(u, ζ)
d

dr

∣∣∣∣
r=0

θ(u, �ξ + rζ)θ(σ(u, �ξ),−�ξ +O(�2))

= d

dr

∣∣∣∣
r=0

θ(σ(u, �ξ), rζ + B(σ(u, �ξ), �ξ + rζ,−�ξ +O(�2))

+O3(σ(u, �ξ), �ξ + rζ,−�ξ +O(�2)))

= dθ

dv
(σ(u, �ξ), 0)(ζ − �B(σ(u, �ξ), ζ, ξ) +O(�2))

= γ(σ(u, �ξ), ζ − �B(σ(u, �ξ), ζ, ξ) +O(�2)).

The result follows by differentiation and because γ is linear in the second variable. �
The map γ : U × Rn → A|U is a local trivialisation of A. The induced local trivialisation of

A∗:

δ : U × Rn → A∗|U
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is characterised by

〈δ(u,X), γ(u, ζ)〉 = 〈X, ζ〉,
where 〈 , 〉 denotes the euclidean product on Rn.

Lemma 3.4. Let e1, . . . , en be a basis of Rn, then for (u, ξ) in U × Rn and Y in A∗
ϕ(u):

d

d�

∣∣∣∣
�=0

δ −1(Y ◦ T −1
�γ(uξ)) =

(
∂σ

∂v
(u, 0)ξ,

∑
k

Y (γ(u,B(u, ek, ξ)))ek

)
.

Proof. In the proof of Lemma 3.3, I showed that

Tγ(u,�ξ) ◦ γ(u, ζ) = γ(σ(u, �ξ), ζ − �B(σ(u, �ξ), ζ, ξ) +O(�2)),

therefore

T −1
γ(u,�ξ) ◦ γ(σ(u, �ξ), ζ)

= γ(u, ζ + �B(u, ζ, ξ) +O(�2)) (Here I used σ(u, �ξ) = u+O(�) to simplify the formula).

The lemma is proved by using this formula when differentiating

δ −1(Y ◦ T −1
�γ(u,ξ)) =

(
σ(u, �ξ),

∑
k

Y (T −1
�γ(uξ) ◦ γ(σ(u, �ξ), ek))ek

)
. �

Write

B(u, ek, eh) =
∑
j

B
j
k,hej.

In particular, the Bjkh’s depend on u.

Corollary 3.5. For Y =∑j Yjej and ξ =∑h ξheh in Rn:

d

d�

∣∣∣∣
�=0

δ −1(δ(u, Y ) ◦ T −1
�γ(u,ξ)) =

⎛⎝∂σ
∂v

(u, 0)ξ,
∑
k,h,j

YjB
j
k,hξhek

⎞⎠ .
Let f be a smooth function on A∗. Define F = f ◦ δ, then

d

d�

∣∣∣∣
�=0

f (δ(u, Y ) ◦ T −1
�γ(u,ξ)) =

∑
k,h

ξk
∂F

∂uh
(u, Y )

∂σh

∂vk
(u, 0) +

∑
k,h,j

Yjξh
∂F

∂Yk
(u, Y )Bjk,h.

Proof. The first formula is just Lemma 3.4 written in local coordinates. The second one is a
straightforward computation. �

Let us look at the Poisson bracket on A∗ in local coordinates.

Lemma 3.6. Let f and g be smooth functions on A∗. Define F = f ◦ δ and G = g ◦ δ, smooth
functions on U × Rn. Set

{F,G} = {f, g} ◦ δ.
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Let (u,Z) be in U × Rn and denote ∂F
∂uj

for ∂F
∂uj

(u,Z). I will use similar notations for ∂G
∂uj

, ∂F
∂Zk

and ∂G
∂Zk

. Then

{F,G}(u,Z) =
∑
k,h,j

∂F

∂Zk

∂G

∂Zh
(Bjhk − B

j
kh)Zj +

∑
k,h

(
∂F

∂Zk

∂G

∂uh
− ∂F

∂uh

∂G

∂Zk

)
∂σh

∂vk
(u, 0).

Proof. This is essentially Eq. (1.2.6) and Proposition 2.2.6 in Ramazan [5] where it is proved
that3:

[γ(u, ek), γ(u, eh)] =
∑
j

(Bjkh − B
j
hk)γ(u, ej)

and, if u∗
j is the jth coordinate map on U:

ρ(ek) · u∗
h(u) = ∂σh

∂vk
(u, 0). �

Proposition 3.7. Let f and g be in Q(A∗). Let H be a compactly supported smooth function on
G̃ and q a point in M, then

d

d�

∣∣∣∣
�=0

(
F̃(Df ) � F̃(Dg) − F̃(Dg) � F̃(Df )

)
(�,q)

(H) = i ˜F(D{f,g})(0,q)(H).

Proof. The left-hand side of the above equation is equal to

d

d�

∣∣∣∣
�=0

(Nfg −Ngf ).

The terms

F(Dfg)q

(
∂H

∂�

∣∣∣∣
�=0

)
appear in both d

d�

∣∣∣
�=0

Nfg and d
d�

∣∣∣
�=0

Ngf in Lemma 3.2; they will therefore cancel each other

when taking the difference. The other term in d
d�

∣∣∣
�=0

Nfg, when using Corollary 3.5, becomes

a sum of terms. These terms can be dealt with by recalling that the Fourier transform takes the
operator ‘multiplication by a variable’ to the operator ‘derivation with respect to this variable’.
For example (with some slight abuse of notations):∫

Rn
dµ(X)G(u,X)

∫
Rn

dµ(ξ) e−i〈X,ξ〉ξk
∫
Rn

dµ(Y )
∂F

∂uh
(u, Y )

∂σh

∂vk
(u, 0)

×
∫
Rn

dµ(ζ) e−i〈Y,ζ〉H0(ξ + ζ)

=
∫
Rn

dµ(X)G(u,X)i
∂

∂Xk

∫
Rn

dµ(ξ) e−i〈X,ξ〉
∫
Rn

dµ(Y )
∂F

∂uh
(u, Y )

∂σh

∂vk
(u, 0)

×
∫
Rn

dµ(ζ) e−i〈Y,ζ〉H0(ξ + ζ)

3 The signs here and in Ramazan [5] do not agree. This is due to different choices in the definition of the map α.
Essentially, I have s ◦ α constant on the fibres of A → Q, whereas he has t ◦ α constant on the same fibres.
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= −i
∫
Rn

dµ(X)
∂G

∂Xk
(u,X)

∫
Rn

dµ(ξ) e−i〈X,ξ〉
∫
Rn

dµ(Y )
∂F

∂uh
(u, Y )

∂σh

∂vk
(u, 0)

×
∫
Rn

dµ(ζ) e−i〈Y,ζ〉H0(ξ + ζ)

= −i
∫
Rn

dµ(Z)
∂G

∂Zk
(u,Z)

∂F

∂uh
(u,Z)

∂σh

∂vk
(u, 0)

∫
Rn

dµ(ξ) e−i〈Z,ξ〉H0(ξ),

where the last line is true for the same reason that F(Df ) � F(Dg) = F(Dfg) (see Lemma 2.10).
A similar computations leads to∫

Rn
dµ(X)G(u,X)

∫
Rn

dµ(ξ) e−i〈X,ξ〉ξh
∫
Rn
vµ(Y )YjB

j
kh

∂F

∂Yk
(u, Y )

×
∫
Rn

dµ(ζ) e−i〈Y,ζ〉H0(ξ + ζ)

= −i
∫
Rn

dµ(Z)
∂G

∂Zh
(u,Z)

∂F

∂Zk
(u,Z)ZjB

j
kh

∫
Rn

dµ(ξ) e−i〈Z,ξ〉H0(ξ).

These computations together with Lemma 3.6 prove Proposition 3.7. �

I obtain the following corollary.

Corollary 3.8. Let f and g be two smooth functions on A∗ acceptable for quantisation. Then

1

i�
[F̃(Df ), F̃(Dg)]

is a well-defined element of C∞
c (G̃) ⊗s̃ C

∞
c (R ×M), which along � = 0 is equal to

˜F(D{f,g}).

4. Quantisation of R2n, with and without a magnetic field

In this short section, I will discuss the case of the quantisation of observables on the phase
space of a particle in Rn.

LetM = Rn with its euclidean structure and A be the tangent bundle of M, that isA = R2n. In
these conditions, the Lie groupoid G integrating A is the pair groupoid M ×M = Rn × Rn with
source map, tangent map and product:

s(p, q) = q, t(p, q) = p, (r, p) · (p, q) = (r, q).

The euclidean product gives a natural family of measures on the fibres of A. I can take α to be
defined on the whole of A by

α(q, ξ) = (q+ ξ, q).

Also, I can chooseψ to be equal to the constant function 1. The space of morphisms of the tangent
groupoid is diffeormorhpic to R × Rn × Rn. Let H be a compactly supported smooth function
on R × Rn × Rn; it is a function of (�, p, q). Let f be a function acceptable for quantisation.
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For � �= 0 and x = (p, q) in G:

Q�(f )(H)(x) =
∫
A∗
p

dXf (p,X)
∫
Ap

dξ e−i〈ξ,X〉H(α̃(�, p, ξ) · (�, p, q))

=
∫
Rn

dXf (p,X)
∫
Rn

dξ e−i〈ξ,X〉H((�, p+ �ξ, p) · (�, p, q))

=
∫
Rn

dXf (p,X)
∫
Rn

dξ e−i〈ξ,X〉H(�, p+ �ξ, q).

If f (p,X) is equal to Xk, the k-th coordinate of X, its quantisation at a given value of � is

Q�(Xk) = −i�
∂

∂pk
,

whereas if f (p,X) = pk then

Q�(pk) = pk,

the operator multiplication by pk.
A magnetic field (see [4], p. 178) is given by a closed 2-form B on M. Since M = Rn has

no cohomology in degree 2, it follows that there exists a one-form (the vector potential) A such
that B = dA. If the particle we are studying carries an electric charge e and has mass m, then the
Hamiltonian of the system can be taken to be

HA(p,X) = 1

2m
||X− eA||2,

where A is seen as a section of T ∗M. This Hamiltonian is acceptable for quantisation and one
can therefore quantise the system consisting of the particle moving in the magnetic field. For a
different, and more detailed, approach to this problem, see Mantoiu and Purice [3].

5. Some general results about Poisson manifolds

Given a Poisson manifold P, its cotangent bundle is naturally a Lie algebroid A. If this Lie
algebroid is integrable to a Lie groupoid then Theorem 2.14 gives a quantisation of the Lie–
Poisson manifold A∗. Since the Poisson structure of A∗ is completely determined by the one of
P, on might hope to be able to say something about a quantisation of P. One way of doing so
might consist in looking for a surjective Poisson map π between A∗ and P and then quantised
a function on P by taking the quantisation of the pulled back function on A∗. In C∗-algebraic
quantisation, such an idea is bound to fail because if f is a function on P, then its pull-back π∗f
has little chance of being quantisable. Nevertheless, I will show with an example that this idea
can be made to work when using the quantisation defined in Theorem 2.14.

The aim of this section is to derive the partial differential equation that a map π : TP → P has
to satisfy to be Poisson. This PDE is given in Corollary 5.2.

Assume P is a Poisson manifold with Poisson bivector field η. Denote by p : TP → P the
natural projection. The Poisson structure of P induces a Lie algebroid structure on the cotangent
space of P with anchor map η : T ∗P → TP4. Its dual, the tangent space of P, inherits a Poisson

4 Here, η is understood as an anti-symmetric map between T ∗P and TP. I will use different sorts of interpretations of
η, the precise interpretation depending on the context.
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structure in the following manner. Let α and β be closed one-forms on P. They naturally define
smooth functions, denoted α̃ and β̃, on TP by, for v in TxP :

α̃(v) = α(v), and β̃(v) = β(v).

Put

{α̃, β̃}TP (v) = [α, β](v), (2)

where [, ] is the bracket on the Lie algebroid T ∗P . Let f and g be smooth functions on P. Put

{p∗f, p∗g}TP = 0. (3)

Finally, for v in TxP , put

{α̃, p∗f }TP (v) = η(α(x)) · f. (4)

Formulae (2)–(4) completely determine the Poisson structure on TP.
Pick a torsion free connection on TP:

∇ : Γ (TP) ⊗ Γ (TP) → Γ (TP), (X, Y ) �→ ∇XY.
For example, the Levi–Civita connection of a metric would do. In particular, for every v in TxP ,
there is a splitting of Tv(TP) as a direct sum of a horizontal space Hv(TP) and a vertical space
Vv(TP). Denote by H and V the projection on respectively H(TP) and V(TP). Both these spaces
are isomorphic to TxP and the projection H is equal to p∗ while V(TP) is the kernel of p∗. The
isomorphism between Vv(TP) and TxP is given by

TxP → Vv(TP), u �→ d

dt

∣∣∣∣
t=0

v+ tu.

Let µ be in
∧2

TxP . The connection also defines a splitting of the tangent space of
∧2

TP at µ
into the direct sum of a horizontal space isomorphic to TxP and a vertical space isomorphic to∧2

TxP . Because p ◦ η is the identity of P, the horizontal component of Tη : TP → T
∧2

TP is
the identity. Denote its vertical component by

Dη : TP →
2∧
TP.

If f is a smooth function on TP, its differential at v inTxP has a horizontal and a vertical component.
Denote by ∂2f : TxP → C its horizontal component and by ∂1f : TxP → C its vertical one. In
the same fashion, for π : TP → P , denote by ∂1π and ∂2p respectively the vertical and horizontal
components of Tπ : T (TP) → TP .

Lemma 5.1. Let f and g be smooth functions on TP. For x in P and v in TxP :

{f, g}TP (v) = 〈Dη(v), ∂1f (v) ∧ ∂1g(v)〉 + 〈η(x), ∂1f (v) ∧ ∂2g(v) − ∂1g(v) ∧ ∂2f (v)〉.
Proof. Use the right-hand side of the above equation to define a bracket

{, } : C∞(P) × C∞(P) → C∞(P).

This bracket satisfies the Leibniz identity because the operators ∂1 and ∂2 do. It is also clearly
anti-symmetric. To prove that it is equal to {, }TP , it suffices to prove that it satisfies Eqs. (2)–(4).

Eq. (3) is satisfied because ∂1 vanishes on pull-backs to TP of functions on P.
If g is a function on P, then ∂2p

∗g = dg. If f is equal to α̃ for some one-form α on P, then
∂1α̃(v) = αx for all v in TxP . Hence, the bracket { , } satisfies Eq. (4).
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The connection on TP → P also defines a connection on its dual bundle and on all bundles
one can construct from TP and T ∗P through direct sums, tensor products, etc. Since the definition
of a Poisson structure is local, I can assume that α̃ and β̃ are exact forms when checking that { }
satisfies Eq. 2. Let α and β be closed one-forms on P. Let v be in TxP and let σ be a path in P
such that σ(0) = x and σ̇(0) = v; for example, take σ(t) = Exp(tv), where Exp is the exponential
map of the connection. Eq. (2) gives

{α̃, β̃}TP (v) = d

dt

∣∣∣∣
t=0

ησ(t)(α ∧ β). (5)

Let A → P be the bundle T ∗P ⊕ T ∗P ⊕∧2
TP → P . There is a natural map:

m : A → R (α, β, µ) �→ µ(α ∧ β)

I will compute the differential of this map. Let w be in T(αx,βx,µx)A with horizontal component
H(w) = v. Its vertical component V(w) = (ε1, ε2, θ) is in T ∗

x P ⊕ T ∗
x P ⊕ ∧2TxP . Denote φσ(t) :

Ax → Aσ(t) be the parallel transport along the path σ. Define a path in A by

γ(t) = φσ(t)(αx + tε1, βx + tε2, µx + tθ).

The path γ satisfies

γ(0) = (αx, βx, µx), and γ̇(0) = w.

Notice that, because the connection on A is defined using a single connection on TP, we have

m ◦ φσ(t) = m.

This means

m∗(w) = d

dt

∣∣∣∣
t=0

m ◦ φσ(t)(αx + tε1, βx + tε2, µx + tθ)

= m(ε1, βx, µx) +m(αx, ε2, µx) +m(αx, βx, θ).

This last computation together with Eq. (5) gives

{α̃, β̃}TP (v) = m(∂1,xα(v), βx, ηx) +m(αx, ∂1,xβ(v), ηx) +m(αx, βx,Dη(v)). (6)

Firstly, in this equality, one can replace αx and βx by respectively ∂1,vα̃ and ∂1,vβ̃. Secondly,
consider a vector field X on P. Let

ι : P → T ∗P ⊕ TP, x �→ (αx,Xx),

and

k : T ∗P ⊕ TP → C, (δ, Z) �→ δ(Z).

I choose X such that ∂1X = 0. Then, differentiation of the equality:

k ◦ ι = α̃ ◦X
leads to

∂2,Xx α̃(v) = ∂1,xα(v)(Xx). (7)

Since α and β are closed one-forms, and since ∇ is torsion free:

∂1,xα(v)(Xx) = ∂1,xα(Xx)(v). (8)

Eqs. (6)–(8) put together prove that the bracket {, } satisfies Eq. (2). �
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I deduce the following corollaries.

Corollary 5.2. Let π be a map TP → P . Let f and g be functions on P. Their pull-backs by π
satisfy

{π∗f, π∗g}TP (v) = 〈 (∂1π(v) ⊗ ∂1π(v))(Dxη(v))

+ 2(∂1π(v) ⊗ ∂2π(v))(η(x)), dπ(v)f ∧ dπ(v)g 〉.
In particular, π is Poisson if and only if

1

2
(∂1π(v) � ∂1π(v))(Dxη(v)) + (∂1π(v) � ∂2π(v))(η(x)) = η(π(v)),

for all v in TxP , where � means the symmetric product.

Corollary 5.3. Assume the Poisson bivector field is parallel relative to the connection ∇. Then,
a map π : TP → P is Poisson if and only if

(∂1π(v) � ∂2π(v))(η(x)) = η(π(v)),

for all v in TxP .

Proof. Indeed, since the Poisson bivector field is parallel:

Dη(v) = 0. �

Assume the connection on P is the Levi–Civita connection of a metric on P and assume P is
complete. Its exponential map is denoted

Exp : TP → P.

When restricted to a fibre TxP , I will denote it Expx. I quote here the following lemma for future
reference.

Lemma 5.4. Let v be a tangent vector to P at a point x. Let w be a tangent vector to TP at
v. Its horizontal and vertical components are respectively Hw and Vw. Consider the geodesic
σ(t) = Exp(tHw) and the one-parameter family of geodesics:

γs(t) = Expσ(t)(sφσ(t)(v+ tVw)),

where φ is the parallel transport. The differential of Exp at v is given by

TvExp(w) = d

dt

∣∣∣∣
t=0

γ1(t).

It follows that TvExp(w) is also the value at t = 1 of the Jacobi field J along the geodesic σ with
initial value J(0) = Hw and J ′(0) = Vw. In particular, Exp : TP → P is a submersion.

Proof. This is a simple exercise in Riemannian geometry. �

6. The torus with constant Poisson structure

Let P be the n-dimensionnal torus Rn/2πZn with its metric inherited from the euclidean metric
〈, 〉 on Rn. Consider a constant Poisson structure on P given by a skew-symmetric n× n matrix



S. Racanière / Journal of Geometry and Physics 56 (2006) 1810–1836 1831

η. Identify TP with Rn × P in the obvious way. From Corollary 5.2, I deduce that the map:

π : Rn × P → P, (u, p) �→ Expp

(
1

2
u

)
= p+ 1

2
u

is Poisson. It is also a surjective submersion. Hence, I can hope that a quantisation of TP will
lead to a quantisation of P.

The dual A = T ∗P of TP , identified with TP using the euclidean metric, is a Lie algebroid.
It can be integrated to a source simply connected Lie groupoid. The space of morphims of this
groupoid is Rn × P . Notice that Rn is the direct orthogonal sum of Ker(η) and Im(η). Let pr1 be
the orthogonal projection on Ker(η) and pr2 the orthogonal projection on Im(η). The source map
of the groupoid is

s : Rn × P → P, (u, p) �→ p,

whereas the target map is

t : Rn × P → P, (u, p) �→ p+ pr2(u).

Given two elements (u, p) and (v, q) in the groupoid, their multiplication (u, p) · (v, q) is well
defined if the target of (u, p) is equal to the source of (v, q), that is if q = p+ pr2(u); in this case

(u, p) · (v, q) = (u+ v, p).

Assume that η is invertible, that is P is symplectic. In this case, η defines an isomorphism of Lie
algebroids between T ∗P and TP:

T ∗P → TP, (ξ, p) �→ (η(ξ), p).

Choose the natural connection on the trivial vector bundle TP � Rn × P → P .
The exponential map Exp for TP is

TP → Rn × P, (X,p) �→ (X,p).

Whereas the Exp map for T ∗P , that is α, is

T ∗P → P, (ξ, p) �→ (η(ξ), p).

The tangent groupoid is given by G̃ = R × Rn × P with

s(�, u, q) = (�, q), and t(�, u, q) = (�, q+ �u).

The product is given by

(�, v, q+ �u) · (�, u, q) = (�, v+ u, q).

With this representation of G̃, the exponential of the tangent groupoid is

R × TP → R × Rn × P, (�, X, q) �→ (�, X, q),

therefore α̃ is

R × T ∗P → R × Rn × P, (�, ξ, q) �→ (�, η(ξ), q).

Let f be a function on A∗ = TP . Assume it is acceptable for quantisation. Let H be a compactly
supported smooth function on G̃. For (�, q) in R × P :

Q(f )�,q(H) =
∫
Rn

d(X) f (X, q)
∫
Rn

d(ξ) e−i〈ξ,X〉H(�, η(ξ), q). (9)



1832 S. Racanière / Journal of Geometry and Physics 56 (2006) 1810–1836

Let r be a vector in Zn and define a function:

gr : P → C, q �→ ei〈r,q〉.

The number ei〈r,q〉 is well defined because 〈r, q〉 is well-defined modulo 2π. Set fr = π∗gr, that is

fr : TP → C, (X, q) �→ ei〈r,q〉e1/2i〈r,X〉.

Proposition 6.1. Let r and r′ be vectors in Zn, then

Q(fr) � Q(fr′ ) = Q(ei�/2〈r,η(r′)〉fr+r′ ).

Proof. With fr instead of f, (9) becomes

Q(fr)�,q(H) =
∫
Rn

d(X) ei〈r,q〉 e1/2i〈r,X〉
∫
Rn

d(ξ) e−i〈ξ,X〉H(�, η(ξ), q)

= ei〈r,q〉H(�, η(1/2r), q).

Hence, the product Q(fr) � Q(fr′ ) is

Q(fr) � Q(fr′ )�,q(H)

=
∫
Rn

d(X) fr′ (X, q)
∫
Rn

d(ξ) ei〈ξ,X〉
∫
Rn

d(Y )fr(Y, q+ �η(ξ))

×
∫
Rn

d(ζ) e−i〈ζ,Y〉H(�, η(ζ + ξ), q)

=
∫
Rn

d(X) ei〈r′, q〉 e1/2i〈r′,X〉
∫
Rn

d(ξ)ei〈ξ,X〉
∫
Rn

d(Y )ei〈r,q+�η(ξ)〉 e1/2i〈r, Y〉

×
∫
Rn

d(ζ)e−i〈ζ,Y〉H(�, η(ζ + ξ), q)

= ei〈r′+r,q〉
∫
Rn

d(Y )ei〈r,�η(1/2r′)〉 ei〈r,Y〉
∫
Rn

d(ζ)e−i〈ζ,Y〉H(�, η(ζ + 1/2r′), q)

= ei〈r′+r,q〉 ei�2 〈r,η(r′)〉H(�, 1/2η(r + r′), q) = ei�2 〈r,η(r′)〉Q(fr+r′ )�,q(H). �

Let P be the algebra of functions on P generated by {gr, r ∈ Zn}. It is a dense subalgebra of the
C∗-algebra of continuous functions on P. Proposition 6.1 shows that the product on this algebra
can be deformed in

gr �� gr′ = ei�2 〈r,η(r′)〉gr+r′ ,

for each �. With this new product, P becomes a *-algebra which can be completed into a C∗-
algebra P�. The natural family of injections P → P� gives the usual quantisation of the torus
with constant Poisson structure as defined in Tang and Weinstein [7]. It is a strict deformation
quantisation in the sense of Rieffel.
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Appendix A. The two-sphere in R3

Let P = S2 be the two-sphere {(x, y, z) ∈ R3/x2 + y2 + z2 = 1}. In this section, I show how
to construct a Poisson map between TS2 and S2.

Consider the metric on S2 given by the restriction of the euclidean metric dx2 + dy2 + dz2 on
R3. For p = (x, y, z) in R3, define the endomorphism:

Jp(u) = u ∧ p, for all u ∈ R3.

The restriction of J to each tangent space of S2 defines a complex structure on the sphere. Also

ω = g(J ·, ·)
is a symplectic form on S2. It is the restriction to S2 of the two-form zdy ∧ dz− ydx ∧ dz+
zdx ∧ dy defined on R3. The geodesics are great circles on the sphere so that the exponential is
given by

Expp(u) = p cos(‖u‖) + sin(‖u‖)

‖u‖ u.

The differential ∂1Exp is given by

∂1Exp(u,p)(h) = d

dt

∣∣∣∣
t=0

Expp(u+ th)

= sin(‖u‖)

‖u‖ (−〈u, h〉p+ h) + ‖u‖ cos(‖u‖) − sin(‖u‖)

‖u2 ‖
〈
u

‖u‖ , h
〉
u,

this is a map from TpS2 to TExpp(u)S
2.

Also

∂2Exp(u,p)(ε) = d

dt

∣∣∣∣
t=0

Expσ(t)φσ(t)(u),

where σ(t) = Expp(tε) and φσ(t) is the parallel transport along σ(t). Without loss of generality, I
can assume that ε is a unit vector. In this situation:

σ(t) = cos(t)p+ sin(t)ε.

Also, {p, ε, p ∧ ε} forms an orthonormal basis of R and φσ(t) is a morphism in SO(3). It is given
by

φσ(t)(p) = σ(t), φσ(t)(ε) = d

dt
σ(t), = − sin(t)p+ cos(t)ε, φσ(t)(p ∧ ε) = p ∧ ε.

It follows that

φσ(t)(u) = 〈u, ε〉(− sin(t)p+ cos(t)ε) + 〈u, p ∧ ε〉p ∧ ε.
The parallel transport preserves the norm, hence u and φσ(t)(u) have the same norm and

Expσ(t)φσ(t)(u) = cos(‖u‖)σ(t) + sin(‖u‖)

‖u‖ φσ(t)(u)

= cos(‖u‖)(cos(t)p+ sin(t)ε) + sin(‖u‖)

‖u‖ (〈u, ε〉(− sin(t)p

+ cos(t)ε) + 〈u, p ∧ ε〉p ∧ ε).
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I can now compute

∂2Exp(u,p)(ε) = d

dt

∣∣∣∣
t=0

Expσ(t)φσ(t)(u) = cos(‖u‖)ε− sin(‖u‖)

‖u‖ 〈u, ε〉p.

This last formula is of course still valid when ε is not a unit vector.
Consider a map

π : TS2 → S2 u �→ Exp(λ ‖u‖) = cos(λ‖u‖)p+ f (λ‖u‖)λu,

where λ is a function of ‖u‖2 defined for ‖u‖2 in some neighbourhood of 0 in R. For π to be a
Poisson map, I need λ(0) = 1

2 .
I will now compute the differential of such a map. Firstly

∂1,(u,p)π(h) = d

dt

∣∣∣∣
t=0

Expp(λ(‖u+ th‖2)(u+ th))

= d

dt

∣∣∣∣
t=0

cos(λ(‖u+ th‖2) ‖u+ th‖)p

+ f (λ(‖u+ th‖2) ‖u+ th‖)λ(‖u+ th‖2)(u+ th)

= − sin(λ ‖u‖)(2λ′〈u, h〉 ‖u‖ + λ〈h, u

‖u‖〉)p+ f (λ ‖u‖)λh

+ 2f (λ ‖u‖)〈u, h〉λ′u+ (2〈u, h〉λ′ ‖u‖ + λ〈h, u

‖u‖〉)f ′(λ ‖u‖)λu

= −λf (λ ‖u‖)(2λ′〈u, h〉 ‖u‖2 + λ〈u, h〉)λf (λ ‖u‖)p+ f (λ ‖u‖)λh

+ (2f (λ ‖u‖)λ′ + 2λ′λf ′(λ ‖u‖) + λ2

‖u‖f
′(λ ‖u‖))〈u, h〉u

= −λf (λ ‖u‖)(2λ′〈u, h〉 ‖u‖2 + λ〈u, h〉)λf (λ ‖u‖)p+ f (λ ‖u‖)λh

+ (2λ′ cos(λ ‖u‖) + λ2

‖u‖f
′(λ ‖u‖))〈u, h〉u,

where for the last equality I have used the relation:

tf ′(t) = cos(t) − f (t).

Secondly, assuming without loss of generality that ‖ε‖ = 1:

∂2,(u,p)π(ε) = d

dt

∣∣∣∣
t=0

π(φσ(t)(u))

= d

dt

∣∣∣∣
t=0

Expσ(t)(λ(
∥∥φσ(t)(u)

∥∥2)φσ(t)(u))

= d

dt

∣∣∣∣
t=0

Expσ(t)(λ(‖(u)‖2)φσ(t)(u))

= d

dt

∣∣∣∣
t=0

cos(λ
∥∥φσ(t)(u)

∥∥)σ(t) + f (λ
∥∥φσ(t)(u)

∥∥)λφσ(t)(u)

= d

dt

∣∣∣∣
t=0

cos(λ ‖u‖)σ(t) + f (λ ‖u‖)λφσ(t)(〈u, ε〉ε+ 〈u, p× ε〉p× ε)
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= cos(λ ‖u‖)σ′(0) + λf (λ ‖u‖)
d

dt

∣∣∣∣
t=0

(〈u, ε〉σ′(t) + 〈u, p× ε〉p× ε)

= cos(λ ‖u‖)ε+ 〈u, ε〉λf (λ ‖u‖)σ
′′
(0) = cos(λ ‖u‖)ε− 〈u, ε〉λf (λ ‖u‖)p.

I wish to compute ‖u‖2∂1π � ∂2π(η(p)). I know

η(p) = 1

‖u‖2 u ∧ (p× u), whenever u �= 0.

So, I need to compute

∂1,(u,p)π(u) = −λf (λ ‖u‖)(2λ′ ‖u‖2 + λ) ‖u‖2 p+ λf (λ ‖u‖)u

+ (2λ′ cos(λ ‖u‖) + λ

‖u‖2 f
′(λ ‖u‖)) ‖u‖2 u

= −λ ‖u‖2 f (λ ‖u‖)(2λ′ ‖u‖2 + λ)p+ (λf (λ ‖u‖)

+ 2λ′ cos(λ ‖u‖) ‖u‖2 + λ2 ‖u‖ f ′(λ ‖u‖))u

= (2λ′ ‖u‖2 + λ)(cos(λ ‖u‖)u− ‖u‖2 λf (λ ‖u‖)p),

and

∂1,(u,p)π(p× u) = λf (λ‖u‖)p× u,

and

∂2,(u,p)π(u) = cos(λ ‖u‖)u− ‖u‖2 λf (λ ‖u‖)p

and finally

∂2,(u,p)π(p× u) = cos(λ ‖u‖)p× u.

Notice that

∂1,(u,p)π(u) = (2λ′ ‖u‖2 + λ)∂2,(u,p)π(u).

I can now compute

‖u‖2 ∂1π � ∂2π(η(p))

= ∂1π(u) ∧ ∂2π(p× u) + ∂2π(u) ∧ ∂2π(p× u)

= ∂2(u) ∧ ((2λ′ ‖u‖2 + λ)∂2,(u,p)π(u) + ∂1π(p× u))

= (cos(λ ‖u‖)u− ‖u‖2 λf (λ ‖u‖)p) ∧ ((2λ′ ‖u‖2 + λ) cos(λ ‖u‖) + λf (λ ‖u‖))p× u

= (cos(λ ‖u‖)u− ‖u‖2 sin(λ ‖u‖)p) ∧ ((2λ′ ‖u‖2 + λ) cos(λ ‖u‖) + λf (λ ‖u‖))p× u.

On the other hand

‖u‖2 η(π(u, p)) = ‖u‖2 φσ(λ‖u‖)(η(p)),

with σ(t) = Exp

(
t
u

‖u‖
)

= cos(t)p+ sin(t)
u

‖u‖ = φσ(λ‖u‖)(u) ∧ φσ(λ‖u‖)(p× u)

= σ′(λ ‖u‖) ∧ (p× u) = (cos(λ ‖u‖)u− ‖u‖ sin(λ ‖u‖)p) ∧ (p× u).
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It follows that π is a Poisson map if and only if λ satisfies the following differential equation:

(2λ′(t2)t2 + λ(t2)) cos(λ(t2)t) + λ(t2)f (λ(t2)t) = 1.

Put µ(t) = λ(t2) so that µ′(t) = 2tλ′(t2). The function µ satisfies the differential equation:

(µ′(t)t + µ(t)) cos(µ(t)t) + sin(µ(t)t)

t
= 1.

Put α(t) = sin(µ(t)t) so that α′(t) = (µ′(t)t + µ(t)) cos(µ(t)t). The function α satisfies the differ-
ential equation:

tα′(t) + α(t) = t.

A general solution of this equation is

α(t) = a

t
+ t

2
, with a ∈ R.

Hence

µ(t) = 1

t
arcsin

(a
t

+ t

2

)
.

Since I want µ(0) = λ(0) = 1/2, I need a = 0 and

µ(t) = 1

t
arcsin

( t
2

)
.

I deduce the following proposition.

Proposition A.1. The map

π : TS2 → S2, (u, p) �→ Expp

(
1

‖u‖ arcsin

(‖u‖
2

)
u

)
is Poisson.

The way it is written in the previous proposition, the map π is only defined on a neighbourhood
of S2 in TS2. Nevertheless, it can easily be extended to a continuous function on the whole of TS2,
so that it is Poisson wherever it is smooth. The fact that this map is not smooth at all points means
that technics used in Section 6 will not carry over here. I nevertheless believe that a modification
of these technics will make things work.
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